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Abstract -
This paper presents a method for automated excavation

speed and progress estimation. First, a measure for the
progress speed of an excavation pit is taken from the lit-
erature and evaluated regarding the possibility for automa-
tion. For each possible parameter, an automated extraction
algorithm is presented. The used system is an autonomous
excavator arm of a backhoe loader where the used hard-
ware and software system is described. Experimental eval-
uation of the presented approach has been done with the
autonomous system for a small trench, including multiple
digging cycles. The resulting measurements seem to include
some systematic errors which could be identified and suitable
sanity checks could be implemented, removing the erroneous
measurements. The remaining measurements were used to
determine the excavation speed of the autonomous excavator
arm and compared to the values of experienced and amateur
operators.
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1 Introduction & Related Work
In recent years the demand in construction has increased

tremendously, and presumably the trendwill continuewith
an estimated growth of 3.5% per year till 2030 [1], where
infrastructure construction is deemed as the most rapidly
growing subsector with an estimated annual growth of 4%
[1] till 2030. However, a major global problem in con-
struction are delays. There exist a multitude of reasons
for these delays, but [2] identified a "poor planning and
scheduling" as one of the top 3 delay factors. In order to
make it possible to react to such mishaps in planning and
scheduling, it is necessary to be able to detect delays as
early as possible. A continuous comparison between the
planned and the real timeline would be needed, but it is not
feasible to do such checks by hand. Therefore, these com-
parisons need to be automated. While the planning data is

usually present in a suitable digital form, the real schedule
is much more difficult to extract, and strongly depends on
the exact construction task. A specific activity in nearly all
construction sites is the excavation of a construction pit.

Figure 1. Excavator with additional sensor system
(blue circle)

The volume estimation of such a construction pit is
a well-researched problem from the theoretical point of
view [3, 4, 5, 6]. However, estimation by real sensor data
is not well researched, and if, then by using additional
sensors in the surrounding of the pit [7] which might not
be applicable for all construction sites. A more promis-
ing trend is the advancement in autonomous excavation,
which inherently also mandates a pit monitoring. Here
current research deals with the lower [8] and higher level
[9] control, but also with the environment perception [10]
and specifically the modeling of it [11, 12]. Combining
the two levels has only recently become possible, as in
[13], which uses similar sensors and representations, but
does not specifically tackle the estimation of the excava-
tion progress or speed. The paper at hand will also try to
solve the problem of an automatic progress estimation uti-
lizing autonomous excavation. An autonomous backhoe
loader, more specifically the excavator’s arm, is used for
a prototypical implementation of an automated excavation
state and speed monitoring. The used hardware and al-
ready existing software of the backhoe loader is described
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in section 2, and the methodology for extracting additional
sensor data for a progress estimation is described in sec-
tion 3. Afterwards and experimental evaluation is done in
4 and discussed in section 5.

2 System & Preliminary Work
The progress estimation of the excavation pit should

be based on an autonomous excavation arm of a backhoe
loader. Of course, such an autonomous system already
yields a lot of helpful intermediate states and systems,
which will be beneficial for the estimation, and are there-
fore described in this section.

2.1 Hardware

The used backhoe loader is a John Deere 410J TMC
with a front-loader and an excavation arm, an image of
the machine can be seen in figure 1. The backhoe loader
is already equipped with encoders that give the position
of each joint, as well as a control system to control each
of the joints via CAN-bus signals. Additionally, a Mi-
crostrain 3DM-GX5-25 Inertial Measurement Unit (IMU)
and a Hemisphere V320 global navigation satellite sys-
tem (GNSS) is mounted on the top of the cabin, and a
corresponding Real Time Kinematic (RTK) base station
is placed in the vicinity and connected to the GNSS sys-
tem. With this, a precise localization of themachine can be
achieved. For the perception of the surroundings anOuster
OS0-128 3D-laser scanner with 128 lines and a Field-of-
View of 90◦ × 360◦ and a IFM O3D301 Time-of-Flight
(ToF) camera is mounted next to a simple RGB-webcam
on the crowd.

2.2 Software

The higher-level behavior-based control system for the
excavation process is mainly based on the architecture al-
ready described in [14]. A short summary is given in figure
3. Essentially the complete digging cycle is divided into 4
phases, "move to digging", "digging", "move to dumping",
and "dumping" arranged as a state machine. Each phase
is further divided into smaller motion primitives. Tran-
sitions between phases happen when the right conditions,
e.g., bucket angle, are met.
One preliminary perception algorithm which is used in

this work is the bucket volume estimation described in
[15]. Here, a ToF-camera measures a point cloud of the
bucket. Then, a rasterized grid-map is created. After-
ward, the difference to a grip-map of the empty bucket is
calculated. This difference map allows the estimation of
the filled volume inside the bucket. Also other estimation
techniques [16] [17] for the bucket volume and fill level
exist, but as the one in [15] was specifically implemented

for the excavator at hand it was an obvious choice. An-
other used result is the classification of rocks inside a rock
pile, described in detail in [18]. Here, an RGB-image and
a depth-image is used to capture the scene. A wathershed-
segmentation algorithm extracts pixels belonging to differ-
ent rocks. With these pixel segmentations, an estimation
of the rock sizes becomes feasible. In [18], this approach
was used to determine if a rock would need to be crushed
for loading, but here it will be used in a slightly different
manner, as described later.

3 Approach & Implementation
As a next step, one needs to lay a foundation of how

a suitable progress estimation of an excavation pit can be
done. There are already methods known to parameterize
the progress speed in civil engineering. The most obvi-
ous speed estimation would be to measure the excavated
volume per time. However, onewants to normalize this ex-
cavation speed with respect to the current circumstances.
This adapted speed is usually called performance Qn[

m3

h ]

and the relevant parameters will be explained further. Af-
terward, new methodologies on how to extract necessary
information from the sensor data are given.

3.1 Progress Estimation

The main basis of the progress estimation is based on
the works of Girmscheid, especially [19, 20]. An overview
of the necessary parameters is given in table 1.

Name Symbol Unit A/H
Nominal Bucket Volume VB m3 A
Cycle time tc s A
Dissolving factor α 1 A
Fill factor φ 1 A
Trench depth factor f1 1 A
Rotation angle factor f2 1 A
Emptying accuracy f3 1 H
Teeth condition f4 1 H
Maintenance f5 1 H
Operator η1 1 H
Operating condition η2 1 H
Machine utilization rate ηG 1 H

Table 1. Progress estimation parameters according
to [19, 20]. Names are translated, and symbols are
adapted. Column A/H shows whether the parameter
will be assumed to be measured automatically (A)
or by hand (H).

The performance can then be computed as:
Qn =

VB

tc
×3600×α×φ× f1× f2× f3× f4× f5×η1×η2×ηG

From the needed parameters, the ones that can bemeasured
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Figure 2. Image of the start of the four different digging phases of the excavation process, from left to right:
"Digging", "Move to Dumping", "Dumping", "Move to Digging"

move to
digging1

digging2

move to
dumping3

dumping4

trenching

move to
position

rotate

curl bucket

close
bucket

open
bucket

hold angle

hold
relative

move
in tooth
direction

hold crowd
at position

Figure 3. The architecture of the trenching process
[14]. Images of each phase can be seen in figure 2

automatically are described first. The datasheet of the ma-
chine defines the nominal bucket volume. The cycle time
is the time between the start and end of each digging cycle.
The dissolving factor is the ratio between the volume of the
compacted and the loosened soil. The fill factor measures
how much of the fill level of the bucket really corresponds
to the volume of the content, e.g., for big rocks, a lot of
space is unused compared to fine sand. The trench depth
describes the depth of the current digging cycle. The rota-
tion angle is defined as the angle between the digging and
dumping positions in each cycle. All other given parame-
ters can currently not be determined automatically. Some
are also not relevant for autonomous excavation and can not
be calculated in such an excavator. This includes the emp-
tying accuracy, the size of the dumping region (which is
always a "point" in our autonomous excavation scenario),
as well as the operator factor (skill factor). Similarly, the
conditions of the teeth and the maintenance state can be
more easily extracted from external sources. In principle
it is possible to estimate both with additional sensors, e.g.

Figure 4. Bucket fill level estimation [15]

the teeth state could be estimated by using the point cloud
of the time-of-flight camera and then estimating how sharp
the teeth still are. However, in both cases extracting in-
formation about the working hours form the software of
the manufacturer seems to be the better solution, as this
is usually recorded and often accessible to the user. How-
ever, an integration is machine and manufacturer specific
and therefore omitted here. The operating conditions are
not as clearly defined and include the effect of weather, as
well as the quality of preparation work and are therefore
not measured automatically.

3.2 Data Abstraction

In order to extract the defined parameters, additional
evaluation of the sensor and control data has to be done,
which is not present in the preliminary work. A valuable
help is here the knowledge which action is currently ex-
ecuted by the excavator’s arm. The visualization of each
phase or action can be seen in figure 2. With this infor-
mation, the cycle time can be directly calculated by saving
the timestamp of the start of the "digging"-phase and cal-
culating the difference till the subsequent "digging"-phase
starts. Similarly, the trench depth can be deduced by the
z-position of the bucket teeth, which can be calculated by
the kinematic model as in [14], at the start of the "move
to dumping" position, e.g., the end of the "digging"-phase
plus an offset accounting for the bucket width. In the same
manner, the rotation angle can be computed by taking the
difference of the yaw-values at the start of the "dumping"
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and "digging" phases.
The fill and dissolving factors are not as easily calcu-

lated. For the fill factor, the RGB-image and depth image
at the start of the "digging"-phase is considered, and then
a classification of the visible rock sizes, as in [18], is used.
The fill factor is then determined according to the rock
size in the image and the table 2.

Rock Size (s) Fill Factor
s < 63mm 1

63mm ≤ s < 200mm 0.85
200mm ≤ s 0.75

Table 2. Adapted fill factors. In [19, 20] fill factors
for all soil classes (defined by [21]) are given, but the
fill factors do not differ much. The used adaptions
are a compromise between classification difficulty
and effectiveness

In order to calculate the dissolving factor, the estimation
of the bucket fill level as in [15] is used, which corresponds
to the volume of the loosened soil. To calculate the volume
of the compacted soil, the 3D point cloud of the laser scan-
ner is used. The point cloud is rasterized into a grid map,
as seen in figure 6. Between the start of two "digging"-
phases, the height difference of the grid-cells belonging
to the target map, which defines the wanted final form of
the pit, are calculated. The compacted volume can be es-
timated with this depth difference and the grid size. A
major disturbance in this method is the soil, which is only
moved by the bucket and not loaded into it. Therefore one
would like to include all grid-cells in the difference calcu-
lation, but this leads to another problem. Figure 6 shows
the laser scanner-based pose estimation. The measured
points of each scan are fused into the map. Although the
terrain around the excavator is flat, the grid map shows
increasing terrain further away from the excavator. While
the accuracy of the laser scanner reduces with distance,
the divergences are mainly due to the fact that the exact
pose of the scanner is not known because of the vibrations
of the excavator’s arm. The pose further deteriorates dur-
ing the digging process. This pose error is amplified by
the distance, which is why it is not directly visible in the
vicinity of the excavator but still plays a role in the mea-
surements. Therefore not all grid-cells should be chosen.
As a trade-off the cells directly neighboring the target map
are additionally used for the difference calculation.

4 Experiments
For the experimental evaluation, a trench with dimen-

sions 2m × 1m × 5m (Height×Width×Length) has been
excavated. An image of the excavated trench can be seen
in figure 5. The resulting values can be seen in table 3. In

Figure 5. Final excavated trench

the area of the experiments no bigger rocks were present.
Therefore the fill factor was always assumed to be 1 and is
excluded from the table.
Some cycles in table 3 include clear measurement er-

rors. For instance, the GPS Signal was lost in cycles 6 and
18. Therefore, the depth offset of the backhoe’s position
is wrong. For other cycles, e.g., 6 and 19, the estimated
compacted volume is bigger than the loosened volume.
This can only happen for large rocks. In general, an over-
estimation of the compacted volume seems to be a trend.
This is probably due to the way the autonomous excava-
tion happens: the excavator’s arm often goes too deep into
the ground and pulls much more soil out of the ground
than can fit in the bucket. This soil will be measured as
removed from the pit, but not as loosened volume in the
bucket. However, this error should be leveled out, when
this soil is scooped up and moved to the correct dumping
position. In order to have a reasonable speed estimation
at all times, a sanity check taking these two problems into
account is proposed. It includes the following rules:

• Skip measurement if f1 > 4.9m (maximum digging
depth)

• Skip measurement if α > 1 and φ > 1 (Reminder:
φ = 1 in all provided experiments)

If only the remaining measurements are included, the
estimated performance Qn is resulting in 60% of a profi-
cient excavator operator. In comparison, an amateurwould
achieve roughly 65% according to [19, 20], which suggests
that the measurement methods yield suitable results.

5 Conclusion
The presented approach for the estimation of the excava-

tion speed seems to be promising, as it yields good results
in many cases. Even though some measurement errors are
present, they do not affect the task’s suitability. Still, gen-
eral improvements in the estimation of the loosened soil
could be done. Possible extensions include adapting the
size of the grid-cells as well as a more precise localization

355



39 th International Symposium on Automation and Robotics in Construction (ISARC 2022)

Figure 6. Grid map of two consecutive digging cycles (left and right) and corresponding target map (middle).
The cell heights are color-coded. Green indicates a high positive value and red a high negative value. The pit
can be seen as dark red cells in the middle of the grid maps

of the laser scanner to achieve a better fusion. Approaches
like scene flow or ICP-matching seem suitable for improv-
ing this aspect. This would also reduce the effect of a lost
GPS signal which is a major disturbance in the current
implementation. However, in general, with the advance-
ment of the automation of construction machinery and an
increasing number of sensors on a construction site, sim-
ilar approaches are promising. A detailed picture of the
state of the complete construction site could be achieved
by combining the knowledge of different vehicles.
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